论文部分内容阅读
目前,光滑粒子流体动力学方法的GPu加速几乎都是基于简化的Euler控制方程,完整的Navier-stokes方程的GPU实现非常少,且对其困难、优化策略、加速效果的描述较为模糊.另一方面,CPU—GPU协同方式深刻影响着异构平台的整体效率,GPU加速模型还有待进一步探讨.文中的目的是将自主开发的、基于Navier—Stokes方程的SPH应用程序petaPar在异构平台上进行高效加速.文中首先从数学公式的角度分析了Euler方程和Navier—Stokes方程的计算特征,并总结了Navier—Stoke