论文部分内容阅读
广东省高职高考是招收中等职业学校毕业生的选拔性考试,数学科考试旨在测试考生对数学的基础知识、基本技能和基本的数学思想方法的掌握程度,对知识的认知要求分为了解、理解和掌握三个层次。近几年来,高职高考数学试题对椭圆知识的考查一般安排在第24题,是数学卷的压轴题,其中,第2小题学生得分率低、区分度高,因此,如何教学椭圆综合题,我们认为应注意以下问题。
一、正确理解概念定义,获取解题思路
2015年广东高职高考题第24题。
也可以挖掘题设,线段PB过椭圆的左焦点得出直线AB的斜率,求出三角形面积。
由上述几个解题方案看出,课堂教学要注意强化学生的解题信心,其次要使学生熟练掌握相应题型的解题基本思路和基本運算技能。比如,方法1解方程组有一定难度,学生如果没有强烈成功求解的欲望,就会容易放弃。方法2抓住椭圆为中心对称图形才能发现点A,B的坐标关系,才能够成功解题。方法3需熟悉直线上点的横纵坐标关系,才能够成功解题。
三、掌握基本题型解法,增多解题方案
2018年广东高职高考题第24题。
数学问题的解决离不开知识、技能技巧、数学方法的积累,对中职学生来说,既要加强对知识的正确理解与积累,又要加强对解题活动的总结。结合上述实例借助图形辅助的思路发现,体验解题活动就是“动员与组织、辨认与回忆、分离与组合”知识方法的提取过程,因此,需要总结如何才能顺利调动大脑已有的数学知识方法来解题,优化知识方法的“存储”,达到易于“提取”的目的,从而提高解题能力。
责任编辑陈春阳
一、正确理解概念定义,获取解题思路
2015年广东高职高考题第24题。
也可以挖掘题设,线段PB过椭圆的左焦点得出直线AB的斜率,求出三角形面积。
由上述几个解题方案看出,课堂教学要注意强化学生的解题信心,其次要使学生熟练掌握相应题型的解题基本思路和基本運算技能。比如,方法1解方程组有一定难度,学生如果没有强烈成功求解的欲望,就会容易放弃。方法2抓住椭圆为中心对称图形才能发现点A,B的坐标关系,才能够成功解题。方法3需熟悉直线上点的横纵坐标关系,才能够成功解题。
三、掌握基本题型解法,增多解题方案
2018年广东高职高考题第24题。
数学问题的解决离不开知识、技能技巧、数学方法的积累,对中职学生来说,既要加强对知识的正确理解与积累,又要加强对解题活动的总结。结合上述实例借助图形辅助的思路发现,体验解题活动就是“动员与组织、辨认与回忆、分离与组合”知识方法的提取过程,因此,需要总结如何才能顺利调动大脑已有的数学知识方法来解题,优化知识方法的“存储”,达到易于“提取”的目的,从而提高解题能力。
责任编辑陈春阳