LCC-FHMMC混合直流输电系统阀侧故障特性及保护策略

来源 :电力自动化设备 | 被引量 : 0次 | 上传用户:eimayao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
送端采用电网换相换流器(LCC)、受端采用半桥与全桥混合型模块化多电平换流器(FHMMC)的LCC-FHMMC混合直流输电系统,在受端发生阀侧单相接地故障时,具有与半桥或全桥型MMC不同的故障特性.分别从交流电源贡献、直流电源贡献以及高低端阀组差异3个角度对阀侧单相接地故障下子模块过电压机理进行了分析.随后,针对FHMMC混合直流输电系统直流侧无直流断路器的特点,提出了一种基于选相型单向晶闸管旁路支路的故障隔离策略,以及适用于LCC-FHMMC混合直流输电系统阀侧单相接地故障的保护策略.最后,基于PSCAD/EMTDC仿真平台搭建了相关模型,通过仿真验证了理论分析的正确性以及所提保护策略的有效性.
其他文献
当高压直流输电系统直流侧电压降低时,混合模块化多电平变换器(MMC)将工作在过调制状态,面临电容电压不平衡的问题.分析过调制状态下混合MMC中半桥与全桥子模块电容充放电过程与能量变化,提出一种简化的二次谐波环流参考幅值的生成方法.采用二次谐波环流注入方法避免混合MMC中半桥与全桥子模块电容电压不平衡的发生,实现半桥与全桥子模块电容在一个周期内的充放电平衡,使混合MMC在直流电压降低时继续传输有功功率.仿真与实验结果表明,所提出的二次谐波环流注入方法能够有效实现混合MMC在过调制状态下的电容电压平衡.
随着可再生能源的大规模开发,以风能为代表的可再生能源大量并入电网,且渗透率不断提高.一方面,由于惯性时间常数较小的风电机组替代了传统发电机组,系统的总体惯量减少;另一方面,由于风能本身所具有的间歇性、随机性,系统的频率特性发生改变,调频能力随之减弱.风电参与调频是解决风电上网约束的有效手段之一.为此,对风电参与调频领域的研究进行综述,首先以双馈风电机组和永磁直驱风电机组这2类最常用的变速风电机组调频控制策略为例,综述风电机组转子超速控制、桨距角控制、虚拟惯量综合控制、虚拟同步发电机控制,储能与风电调频以及
随着电网的快速发展,用电信息采集系统的数据计算业务面临着巨大挑战.近年来,图形处理器(GPU)因其在浮点计算速度和存储带宽方面的优势成为高性能计算问题中的研究热点,也被成功应用在电力系统计算分析等科学计算领域.在基于人工智能方法的电力负荷预测问题中,以往大部分研究仅考虑了使用GPU加速预测模型的训练,而并未应用在数据集的获取和计算上.提出了一种基于中央处理器-图形处理器(CPU-GPU)异构计算框架下全流程加速的高性能用电负荷预测方案.首先结合统一计算架构(CUDA)和多线程技术实现了使用多台GPU完成用