论文部分内容阅读
感兴趣区域(ROI)的分类是医学图像的计算机辅助诊断过程的最后一步,传统方法只针对每个ROI区域单独提取特征,再利用统计学习的方法训练分类器进行分类.然而图像中每个区域所包含的视觉特征有限,很难进行准确的分类.文中提出一种基于LDA主题模型的改进模型(LDAC),考虑ROI周围区域,即图像的上下文关系,通过利用LDA对ROI周围区域所包含的上下文信息进行建模,同时结合ROI区域的视觉信息和类别标签,从而辅助ROI区域的分类,以达到提高分类准确率的目的.乳腺图像肿块分类实验表明,文中方法可提高分类的准确性.