论文部分内容阅读
为了满足用户对信息检索结果准确不断提高的需求,尽可能应用那些与查询及检索结果有关的信息进行查询结果优化是一种有效的手段。查询扩展和结果重排就是利用附加信息进行检索结果优化的方法。该文提出了基于文档团的文档重排模型(DCRM模型),此模型通过对文档集的学习,构造文档与文档关系的Markov网络,提取出文档Markov网络中的“文档团”,应用文档团信息进行文档重排。在adi、cacm、med、cisi和cran五个数据集上的实验结果表明,本文提出的基于文档团的文档重排模型较BM25模型性能得到有效提高。