论文部分内容阅读
目的对新型侧管式抗荷装备与抗荷动作的综合防护性能进行研究, 探讨采用二者联合的方案对8 G10 s(增长率为2 G/s)高G 进行防护的可行性。方法在离心机上, + Gz 增长率为2 G/s, 先测定9 名飞行学员的基础+ Gz 耐力, 其中5 名飞行学员采用新型侧管式抗荷服(NKH) + 新型抗调器(NKT)+ L1 动作(L1)、另4 名飞行学员采用新型侧管式代偿服(NDC) + NKT+ L1,测定出其最大+ Gz 耐力。结果5 名飞行学员采用NKH+ NKT+ L1 时的最大+ Gz 耐力为8.80±0 .27 G, 比基础+ Gz 耐力高出4.60±0.42 G(P<0.01) ;4 名飞行学员采用NDC+ NKT+ L1 时的最大+ Gz 耐力为8.75±0 .50 G, 比基础+ Gz 耐力高出4.50±0.46 G( P<0 .01) 。结论飞行员采用新型侧管式抗荷装备与抗荷动作能够对8 G10 s( 增长率为2 G/s) 的高G 进行有效防护。
Aim To study the comprehensive protection performance of the new side tube type anti-load equipment and anti-load operation and to explore the feasibility of using the combination of the two to protect the high G at 8 G10 s (the growth rate is 2 G / s). Methods In the centrifuge, the growth rate of + Gz was 2 G / s, and the basic Gz endurance of 9 flight students was measured. Among them, 5 pilots adopted new type of NKH + ) + L 1 action (L 1), and the other four flight participants using the new side tube compensation service (NDC) + NKT + L 1, measured the maximum + Gz endurance. Results The maximum + Gz endurance of 5.80 ± 0 at 5 flight students with NKH + NKT + L1 was obtained. 27 G, which was 4.60 ± 0.42 G higher than baseline + Gz endurance (P <0.01). The maximum + Gz endurance of the four pilots with NDC + NKT + L1 was 8.75 ± 0. 50 G, 4.50 ± 0.46 G (P <0.01) higher than basal + Gz endurance. Conclusion The pilots using the new side-tube type anti-load equipment and anti-load action can effectively protect the high G at 8 G10 s (with an increase rate of 2 G / s).