论文部分内容阅读
直觉模糊推理的两个基本模型是Intuitionistic Fuzzy Modus Ponens(IFMP)和Intuitionistic Fuzzy Modus Tollens(IFMT).首先利用经典模糊集之间的自然距离定义了直觉模糊集间的一种距离.其次,证明了基于Lukasiewicz直觉模糊蕴涵的IFMP和IFMT问题的三Ⅰ方法关于该距离都具有连续性,并且分别给出了IFMP和IFMT问题的三Ⅰ方法满足逼近性的充分条件.
Two basic models of intuitionistic fuzzy inference are Intuitionistic Fuzzy Modus Ponens (IFMP) and Intuitionistic Fuzzy Modus Tollens (IFMT) .First, a distance between intuitionistic fuzzy sets is defined by the natural distance between classical fuzzy sets.Secondly, The triple Ⅰ method based on Lukasiewicz intuitionistic implication of IFMP and IFMT problems has continuity with respect to this distance and gives the sufficient conditions for the triple Ⅰ method of IFMP and IFMT to satisfy the approximation.