计及综合需求响应的综合能源系统优化调度

来源 :电力系统保护与控制 | 被引量 : 0次 | 上传用户:cs444444
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为提高系统运行的可靠性和经济性,在综合能源系统优化调度的基础上引入综合需求响应,利用不同形式能源间的相互转化关系,实现削峰填谷,提高能源利用效率.计及综合需求响应策略,建立了基于电价的电力负荷需求响应和基于激励的热负荷需求响应模型.并以运行成本最小为目标函数,提出了综合考虑供需平衡和供储能设备约束的综合能源系统调度模型.采用改进二阶振荡粒子群算法对模型进行求解.该算法在常规粒子群算法的基础上对速度迭代公式进行更新,克服了常规粒子群算法易陷入局部最优的问题.通过实际算例仿真,验证了所提出模型和求解算法的有效性.
其他文献
为确保行车调度、预防处理轨道交通突发事故,通过曲线拟合充分发掘客流量时间序列趋势性,基于客流量时间分布数据,以整体拟合与自动分段拟合两种分析方法,针对B市多个地铁站客流量,优化分析时间序列模型.优化结果表明,相比整体拟合方法,自动分段拟合可较好去除客流量时间序列趋势,有效提高时间序列预测精确度;自动分段拟合不需要人工,可避免人为失误,既保障了客流量时间序列预测精确性,又实现了自动智能优化,在很大程度上为行车调度与应急安全管控奠定了技术基础.
针对作业人员不按规定佩戴安全帽和非作业人员误入作业现场的问题,设计了基于深度学习的安全帽和语音识别智能终端算法。对于安全帽的检测,采用了人体关键点检测模型和基于深度学习的YOLO3算法。将智能摄像头得到的视频文件,先利用人体关键点模型提取现场人员图像,再结合YOLO3算法检测现场作业人员佩戴安全帽的情况,对于未正确佩戴安全帽的人员发出告警信息。通过模型训练验证了所提模型的实用性。
针对电能质量复合扰动类别多、特征关联性强及识别错误率较高的问题,提出了一种基于混沌集成决策树的电能质量复合扰动识别方法.首先参考IEEE标准,给出了常见的7种单一电能质量扰动和16种电能质量复合扰动的信号模型,并批量生成扰动波形样本.然后针对上述扰动的特性差异,通过S变换时频域分析,设计和提取出9种扰动时频域特征.最后利用集成学习集体能力和混沌搜索优势,构建混沌集成决策树,并有效完成了电能质量复合扰动识别.仿真实验和142组实测数据验证结果表明,该方法对于23种扰动的分类准确率高于基本决策树、复杂决策树及