论文部分内容阅读
在“神光Ⅱ”装置上进行了激光直接驱动爆推型和烧蚀型DT气体的玻璃微球靶内爆实验 .采用多道滤波 荧光谱仪 (FFS)测量 1 5— 2 5 0keV硬x射线谱 ,由高能x射线谱通量和斜率推算出这两种内爆靶产生的超热电子份额ηhe和超热电子温度Th 分别为 ηhe=2 5 %— 30 % ,Th=30— 4 0keV和 ηhe=0 5 %— 4 % ,Th=10— 2 0keV .并给出了不同内爆靶型在不同激光能量EL 和不同调焦方式下超热电子产生的特征 ,由爆推靶产生超热电子份额与实验测量靶的能量吸收效率 ηa=2 9%— 34%比对 ,证明爆推靶吸收的激光能量是以超热电子能量沉积为主 ,同时实验观测中子产额Yn 随超热电子能量Ehe的增大而增大 ,从而证明了爆推靶是依靠超热电子加热玻璃球壳实现内爆的
Laser detonation and ablation DT gas glass microspheres target implosion experiments were carried out on the “SG-Ⅱ” device.Multi-channel filtered fluorescence spectrometer (FFS) was used to measure the hardness of 1 5-25 keV hard x- Spectrum, the energy fraction and slope of the high-energy x-ray spectra deduced that the eutectic electron fraction ηhe and the superheat electron temperature η of the two implosion targets are ηhe = 25% -30%, Th = 30-400keV and ηhe = 0 5% - 4%, Th = 10 - 2 0keV. The characteristics of the hot electrons generated by different implosion targets with different laser energy EL and different focusing modes are given. The energy absorption efficiency ηa = 2 9% - 34% of the electron fraction and the experimental target is compared, which shows that the laser energy absorbed by the explosive target is dominated by superheat electron energy deposition. At the same time, the experimentally measured neutron yield Yn with superheat The increase of the electron energy Ehe increases, which proves that the detonation target is detonating by reheating the electronically heated glass spherical shell