基于改进BP神经网络的铁水预处理终点硫含量预报模型

来源 :钢铁 | 被引量 : 0次 | 上传用户:a410539939
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铁水预处理脱硫是纯净钢生产中的一项重要任务,其中铁水终点硫含量是反映脱硫站能力和生产效果的重要指标.对梅山钢铁股份有限公司铁水包喷吹CaO+Mg粉剂复合脱硫过程,通过采用自适应调整学习率和最大误差学习法对标准BP算法进行了改进,建立了基于改进BP神经网络的铁水预处理终点硫含量预报模型.用梅钢的1154炉数据进行模型训练,经100炉数据现场验证表明,改进的BP算法比标准BP算法预报误差≤0.003%的精度提高28%,有19%的炉次预报值与实际值完全一致,有90%的炉次误差≤0.003%,平均误差为0.001
其他文献
根据冶金热力学的计算结果,提出了钢液-气相界面可能发生的NH3和[O]、[S]耦合反应.该界面反应过程促使NH3在钢液界面生成易被钢液吸收的活性氮原子,同时,脱除了钢液中的氧、
物联网作为一种新的网络形式,相关理论研究和实践应用正在探索过程中。本文介绍了物联网的概念,给出了基于智能物体层、数据传输层、信息关联层、应用服务层的物联网四层体系架构,最后探讨了物联网在实现过程中所面临的问题和挑战。
期刊