论文部分内容阅读
目前,每年被拦截到的新型恶意软件变种数已达千万级别,在线恶意软件仓库Virus Share上存储的未分类的恶意软件数量也超过了2700万.将恶意软件按一定的行为模式进行聚类,不仅使新型攻击更易被检测出来,也有助于及时获取恶意软件的发展态势并做出防范措施.因此提出了一种高效的恶意软件聚类方法,对恶意样本进行动态分析并筛选出包括导入、导出函数、软件字符串、运行时资源访问记录以及系统API调用序列等特征,然后将这些特征转换为模糊哈希,选用CFSFDP聚类算法对恶意软件样本进行聚类.并将聚类个数、准确率、召回率、