论文部分内容阅读
在视觉SLAM系统中,传统的回环检测方法难以同时满足通用性和实时性。通过标志区域提取和CNN特征提取,提出在线构建增量式字典的回环检测方法。通过对图像进行随机扭曲来模拟运动产生的视角变化,结合GIST特征实现无监督的模型快速训练。通过局部标志区域的二进制特征实现快速检索,全局浮点特征实现选择最优匹配。实验表明,与传统方法相比,在100%准确率前提下,召回率提升约30%,整体查询时间约200 ms,内存占用约30 MB。在不同场景下检测更稳定,能够实现快速鲁棒的回环检测。