论文部分内容阅读
针对模拟电路故障特征难以识别的问题,结合液体状态机神经网络的特点,从模拟电路故障特征样本获取和故障模式识别两方面入手,提出一种基于液体状态机的模拟电路故障诊断方法。该方法利用Matlab和PSpice联合仿真,实现大量故障样本数据的自动获取,采用液体状态机进行故障模式的分类,并对两级阻容耦合放大电路的故障诊断实例进行仿真。仿真结果表明:该方法和目前应用最广泛的BP神经网络相比,故障识别准确率会有所下降,但训练时间远小于BP神经网络,且泛化能力强,对模拟电路故障诊断研究有一定的实际意义。