新课标背景下函数解题的方法及注意事项

来源 :考试周刊 | 被引量 : 0次 | 上传用户:lmy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要: 本文主要从数形结合、转化化归、待定系数法、构造法出发对数学函数的解题路径进行探究,在上述基础上分析了初中数学函数解题中的注意事项,并就研究结果进行了总结.
  关键词: 函数 解题方法 注意事项
  一、数形结合解函数习题
  数形结合是解函数习题的常见方法,在对该方法进行应用的过程中,教师要引导学生正确把握题目中的各项条件,在上述基础上合理作图,把函数与图像结合在一起,从而快速、高效解题,找到条件之间的内在关系,得到最优解题路径.
  如在一次函数解题的过程中可以适当构建函数图像,将函数图像作为解题突破口,结合图像查找一次函数的各项参数,确定函数各量的具体关系.与此同时,还要把握好一次函数中的隐含条件,将隐含条件关系在图像中找出,将解答与提问联系在一起,从而准确解答.
  二、转化化归解函数习题
  转化与化归思想是解函数习题的重要途径,该方法应用的过程中要把生题转化为熟题,将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题,从而找到最优解题路径.但是,教师要引导学生进行转化化归分析,确保学生能够实现正确转变,这样才能够保证解题正确.
  【例1】函数y=2x与y=x 1的图像的交点坐标为( )
  【分析】本题主要考查了两条直线相交或平行问题及直线上点的坐标与方程的关系,转化化归分析的过程中要可以将由图像的交点坐标问题转变为两个函数的共同解问题,从而依照课本例题找到解题路径,降低解题难度.
  【解答】根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标(1,2).
  三、待定系数法解函数习题
  【解答】二次函数y=﹣x bx c的图像的对称轴在y轴右侧,则一次函数y=bx c的图像不经过第?摇 ?摇象限.
  【分析】在对未知函数习题进行解答的过程中,教师可以适当引导学生运用待定系数法进行求解,将参数作为“已知条件”,依照参数与函数之间的规律实施解题分析,从而快速解题.
  【解析】由抛物线的对称轴在y轴右侧,得到a与b异号,根据抛物线开口向下得到a小于0,故b大于0,再利用抛物线与y轴交点在y轴正半轴,得到c大于0,即a<0,b>0,c>0,根据一次函数图像与系数的关系:
  对于函数y=kx m,①当k>0,m>0时,函数y=kx m的图像经过第一、二、三象限;
  ②当k>0,m<0时,函数y=kx m的图像经过第一、三、四象限;
  ③当k<0,m>0时,函数y=kx m的图像经过第一、二、四象限;
  ④当k<0,m<0时,函数y=kx m的图像经过第二、三、四象限.
  因此,由于函数y=bx c当k=b>0时,m=c>0,故它的图像经过第一、二、三象限,不经过第四象限.
  四、构造法解函数习题
  构造法解函数习题的过程中要对构造条件进行全面把握.这种方法在当前函数习题解答的过程中非常重要,已经成为初中函数教学中不可或缺的关键部分.构造时要依照条件形成相应的数学模型及解题结构,在上述基础上实现题目的简化,从而顺利解题.
  (1)若抛物线C1过点M(2,2),求实数m的值;
  (2)在(1)的条件下,求△BCE的面积;
  (3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH EH最小,求出点H的坐标.
  【分析】本题求解过程中需要结合题目中的条件构建“牛喝水”模型,通过该模型找到最小值,即H落在线段EC上时,BH EH最小.与此同时,还需要
  五、总结
  初中函数解题的过程中教师要对各项方法进行合理运用,在上述基础上合理设置相应的教学内容,对函数解题技巧进行讲解.要把握好函数中的隐含条件,在上述基础上分析函数解题的最有途径,寻找最佳解题方案,从而达到习题求解的简化,实现解题效益的最大化,为学生今后数学知识学习奠定坚实的基础.
  参考文献:
  [1]刘璐.明确考查方向提高复习效率——初三数学复习教学建议[J].教育实践与研究(B),2011,05:48-50.
  [2]孟庆欣.浅谈中考数学复习中不可忽视的小节问题[J].科教文汇(下旬刊),2011,07:121 135.
  [3]苑建广.精心雕琢命题方式切实考查数学能力——2011年特色中考数学试题的分类赏析[J].教育实践与研究(B),2011,11:48-54.
  [4]拉姆.浅谈中考应用题复习的高效策略[J].才智,2014,23:29-30.
其他文献
目的:探析常规MRI、DWI对非典型性原发性中枢神经系统淋巴瘤(PCNSL)的效果.方法:回顾分析笔者所在医院2017年10月-2019年10月收治的50例非典型PCNSL患者的临床资料,为50例PCN
目的:探究并分析普外科急腹症治疗中应用腹腔镜的临床疗效.方法:病例样本抽选自2018年7月-2019年7月期间于我院就诊治疗的普外科急腹症患者,样本量为66例,以治疗方案差异均分
摘 要: “研究性学习”作为新的课程改革推行的教学模式,已经被大多一线教师接受与采纳,并且在课堂教学中大放异彩。作为基础性学科的数学在研究性学习的背景下具备什么样的特点需要我们做思考与总结,以便能在接下来的课堂教学中围绕这些特点有针对性地贯彻与实施。  关键词: 高中数学 研究性学习 特点  “研究性学习”作为新的课程改革推行的教学模式,已经被大多一线教师接受与采纳,并且在课堂教学中大放异彩。作为
目的:分析对胆结石并胆囊息肉使用腹腔镜胆囊切除术的效果.方法:2017年1月-2019年10月,选胆结石并胆囊息肉患者50例,随机抽取,分2组,研究组25例,用腹腔镜胆囊切除术,对照组25
从生产的观点看.黄金产量仍在继续增长。这是联合金矿公司在其《1990年金》中的主要结论之一。西方世界矿山产金量达到了1653吨的新 From a production point of view, gol
目的:分析消化性溃疡患者的用药依从性对其临床疗效的影响.方法:回顾性分析2019年1月-2019年12月起我院收治的142例消化性溃疡患者,所有患者幽门螺杆菌(Hp)均呈阳性,并按照常
摘 要: 习题讲评课是高中数学教学中的基本课型.教师巧妙利用变式教学的基本思想和方法,有效组织、开展习题讲评课,不仅能引导学生解决数学疑难问题,而且能在引领学生体验释疑解惑的过程中提高学习积极性,内化数学知识和方法,增强解决数学问题的能力,获得良好的数学素养.本文结合课堂教学实际,从数学习题讲评课中变式教学的起点掌握、进程设计、教后回顾等方面,谈一谈如何使数学习题讲评课“变”得更有效、更有趣味性.
目的:研究探讨参麦注射液治疗急性心肌梗死的临床疗效.方法:本次研究以2017年6月至2019年6月收治的60例急性心肌梗死患者为研究对象,随机分为对照组和观察组各30例,对照组给
摘 要: 研究性学习是现代教育提出的一个新的理念,让我们在新时期的课堂教学中学会了用数学的眼光审视与思考具体学科或是具体领域的事情。数学来源于生活,又高于生活,我们的研究性学习材料也要从学生的实际生活中寻找提炼,从而让我们的数学课堂具有高效性与可研究性。  关键词: 研究性学习 数学课堂 生活化  研究性学习具有开放性、探究性、实践性的特点。我们如何在高中数学课堂教学中切实实施与贯彻研究性学习,是
摘 要: 课堂是学科教学的“主战场”。“激活课堂”,就是要将学生主体特性展示出来。本文从如何将高中数学课堂进行有效激活这一“角度”,就教学策略方法的运用,论述了思考和认识。  关键词: 高中数学 激活课堂 教学策略运用  数学学科知识内涵丰富,构建体系复杂,具有显著的抽象性、严密性和深刻性。学生是数学课堂的重要构建“要素”,也是教师教学活动的“策应者”和“合作者”。但很多高中生不愿进入数学课堂,不