论文部分内容阅读
聚类是一种常用的基因表达数据处理手段,然而它又是主观的,如何选择符合数据内在分布的聚类算法成为目前急待解决的问题.根据经验,当选择最佳簇数k后,采用合理的聚类算法对目标数据重复聚类时,结果稳定性较好.因此提出一种基于稳定性的聚类算法选择.该方法将聚类结果的簇间分离度、簇内紧致度和聚类结果稳定性三者结合起来.在验证和应用三组数据时发现,比传统的评估方法,基于稳定性的聚类算法选择更客观、更可靠.