论文部分内容阅读
长鳍金枪鱼以高经济效益、资源丰富等优点成为世界金枪鱼渔业主要捕捞目标之一,进行长鳍金枪鱼渔场预报研究,可以有效提高渔获产量,对渔业生产具有重要意义。传统的线性模型在面对复杂多变的海洋环境数据时无法准确分析其关键因子。本研究选取2000—2015年南太平洋长鳍金枪鱼的延绳钓生产数据,结合海表温度、叶绿素a质量浓度和海面高度等海洋环境因子以及月份和经、纬度等时空数据,采用集成学习模型—轻度量化梯度促进机(LightGBM)模型进行长鳍金枪鱼渔场预报,并与朴素贝叶斯、XGBoost和BP神经网络模型进行对比。同