An Investigation of Dislocation in Olivine Phenocrysts from the Hawaiian Basalts

来源 :地球科学学刊(英文版) | 被引量 : 0次 | 上传用户:liuliushuang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Intracrystalline distortions (like undulose extinction, dislocations, and subgrain boundaries) in olivine from naturally-deformed peridotites are generally taken as signs of dislocation creep. However, simi-lar features in olivine phenocrysts that have been found in basaltic magmas are still not well understood. In particular, whether subgrain boundaries in olivine phenocrysts arise from plastic deformation or grain growth is still debated (in the latter case, they are essentially grain boundaries but not subgrain boundaries. Therefore, we used hereinafter subgrain-boundary-like structures instead of subgrain boundaries to name this kind of intracrystalline distortion). Here we carried out a detailed study on dislocations and subgrain-boundary-like (SG-like) structures in olivine phenocrysts from two Hawaiian basaltic lavas by means of pet-rographic microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). Abun-dant and complex dislocation substructures (free dislocations, dislocation walls, and dislocation tangles) were observed in the decorated olivine grains, similar to those in olivine from peridotite xenoliths entrained by the Hawaiian basalts. The measured average dislocation density is (2.9±1.3)×1011 m-2, and is three to five orders of magnitude higher than that in laboratory-synthesized, undeformed olivine. TEM observations on samples cut across the SG-like structures by FIB (focused ion beam) demonstrated that this kind of structures is made of an array of dislocations. These observations clearly indicate that these structures are real subgrain bound-aries rather than grain boundaries. These facts suggest that the observed high dislocation densities and sub-grain boundaries cannot result from crystal crystallization/growth, but can be formed by plastic deformation. These deformation features do not prove that the olivine phenocrysts (and implicitly mantle xenoliths) were deformed after their capture by the basaltic magmas, but can be ascribed to a former deformation event in a dunitic cumulate, which was formed by magmatic fractionation, then plastically deformed, and finally dis-aggregated and captured by the basaltic magma that brought them to the surface.
其他文献