论文部分内容阅读
首先分析了独立分量分析(ICA)在人脸识别应用中存在的一些问题,然后从3个方面对基于独立分量分析的人脸识别方法进行了改进:首先利用KPCA将人脸映射到特征空间,在特征空间进行ICA得到相对于原样本的非线性独立分量,从而得到一种非线性独立分量分析的方法;其次,定义了Fisher鉴别信息作为选取最佳鉴别独立分量的准则;最后,提出了一种用最佳独立分量表示待识别人脸图像的方法,克服了用直接投影得到的特征不准确的问题.基于ORL人脸数据库的实验表明,利用此改进的非线性最佳鉴别ICA方法,可以得到优于FLDA方