论文部分内容阅读
A new type of FEM, called CEM (composite element method), is proposed to solve the static and dynamic problems of engineering structures with high accuracy and efficiency. The core of this method is to define two sets of coordinate systems for DOF’ s description after discretizing the structure, i.e. the nodal coordinate system UFEM(ζ) for employing the conventional FEM, and the field coordinate system UCT(ζ) for utilizing classical theory. Then, coupling these two sets of functional expressions could obtain the composite displacement field U(ζ) of CEM. The computations of the stiffness and mass matrices can follow the conventional procedure of FEM. Since the CEM inherents some good properties of the conventional FEM and classical analytical method, it has the powerful versatility to various complex geometric shapes and excellent approximation. Many examples are presented to demonstrate the ability of CEM.
A new type of FEM, called CEM (composite element method), is proposed to solve the static and dynamic problems of engineering structures with high accuracy and efficiency. The core of this method is to define two sets of coordinate systems for DOF ’s description After discretizing the structure, ie the nodal coordinate system UFEM (ζ) for employing the conventional FEM, and the field coordinate system UCT (ζ) for utilizing classical theory. Then, coupling these two sets of functional expressions could obtain the composite displacement field U (ζ) of CEM. The computations of the stiffness and mass matrices can follow the conventional procedure of FEM. Since the CEM inherents some good properties of the conventional FEM and classical analytical method, it has the powerful versatility to various complex geometric shapes and excellent approximation. Many examples are presented to demonstrate the ability of CEM.