Dynamic Buffering Performance of the Honeycomb Paperboard Filled with Polyurethane

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:evaclamp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material’s dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffering area of the composite material.
其他文献
Fe-based amorphous and nanocrystalline coatings were fabricated by air plasma spraying. The coatings were further treated by laser remelting process to improve their microstructure and properties. The corrosion resistance of the as-sprayed and laser-remel
The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900℃ for periods up to 2 h were conducted. Cha
The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are use
The dynamic observations of bainitic transformation in a Fe-C-Mn-Si superbainite steel were conducted on a high temperature laser scanning confocal microscope. It is indicated that the mutual intersection of bainite sheaves often occurs during growth of b
Gold (Au) nanoparticles were prepared on Au-film-coated K9 glass and silicon substrates by direct current (DC) magnetron sputtering and thermal annealing treatment. The effects of substrate material, annealing temperature, and time on morphologies of Au n