论文部分内容阅读
随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测算法中,基于深度学习的单阶段目标检测算法因其网络结构较简单、运行速度较快以及具有更高的检测效率而被广泛运用。但现有的基于深度学习的单阶段目标检测方法由于小目标物体包含的特征信息较少、分辨率较低、背景信息较复杂、细节信息不明显以及定位精度要求较高等原因,导致在检测过程中对小目标物体的检测效果不理想,使得模型检测精度降低。针对目前基于深度学习的单阶段目标检测算法存在的问题,研究了