论文部分内容阅读
为了解决传统聚类算法对聚类表征特征量的依赖性以及定义的不完备性,结合遥感图像的数据的空间位置关系提出了一种结合多元信息聚类与空间约束的遥感图像分割方法。针对某一聚类数据,以若干数据点(多元)组合的方式遍历其所有数据点,并定义多元组合的互信息,以表征该聚类的类内相似性;通过计算类外像素对类内多元组合的互信息,刻画类间的非相似性。在此基础上建立类内相似性和类间差异性,然后结合两者之间的平衡关系建立目标函数,并将Potts模型扩展到目标函数以加入空间约束,最后通过最大化目标函数实现图像分割。对模拟及真实全