论文部分内容阅读
现有的多目标遗传算法往往只能求得整个非劣曲线的一部分,同时局部搜索能力差,收敛速度较慢。为了解决这些问题,提出了一种改进算法,该算法将非劣分层遗传算法(NSGA)与向量评估遗传算法(VEGA)的优点结合起来,并且提供了一个利用往代信息构造搜索方向的局部搜索算子,有效扩展了非劣曲线的范围,加快了收敛速度。以某无人机机翼结构的多目标优化问题为例,证明本文改进算法可以较为快速地获得一个分布均匀的非劣解集。