论文部分内容阅读
针对粒子滤波的退化和贫化问题,提出一种GA-MCMC粒子滤波图像恢复算法.该算法引入遗传算法(GA)全局寻优和粒子总数多样性的特性,结合马尔可夫链蒙特卡罗方法(MCMC)的收敛性,将交叉、变异和选择操作融入到粒子滤波图像恢复中,提高了粒子滤波的鲁棒性、精确性和灵活性.实验结果表明,该算法能减少贫化和退化问题,且在对具有混合噪声的真实图像恢复效果方面显示了其优越性.