论文部分内容阅读
信息过滤是文本挖掘领域的重要研究内容之一。针对互动型网络媒体信息(如BBS),提出一种新的信息过滤算法,该算法主要从特征提取和分类器构造两方面对Bayesian方法进行改进。在对不良信息的特征提取过程中,根据网络论坛的特征,在计算中文不良信息特征项的权重时,根据关键词出现的位置、次数以及词长等建立一个特征评估函数,并用它来替换TF—IDF公式中的TF项;同时,考虑到网络论坛中的良性信息与不良信息之间的不平衡分布,采用一种不对称的学习策略来设计Bayesian分类器。实验结果及对比分析表明,该算法具有较高的