论文部分内容阅读
针对目标跟踪中单一特征描述目标能力较弱的情况,提出一种多种特征联合的稀疏表示跟踪方法。在粒子滤波框架下,首先,提取目标模板和候选粒子的多种特征并对其进行核化处理;然后,用字典模板对各候选粒子进行联合稀疏表示,采用可核化的加速近端梯度(KAPG)方法求解稀疏系数并实现候选粒子的重构;最后,将具有最小重构误差的粒子作为跟踪结果。跟踪过程中,利用子空间学习的方法实现目标模板的更新。实验结果表明,与现有跟踪算法相比,该算法提高了跟踪精度,并在目标存在遮挡、光照变化、运动突变等情况时,均可以取得较好的跟踪效果。