论文部分内容阅读
根据推进剂配方理论计算程序计算了含N-脒基脲二硝酰胺(FOX-12)、1,1-二氨基-2,2-二硝基乙烯(FOX-7)、3-硝基-1,2,4-三唑-5-酮(NTO)、三氨基三硝基苯(TATB)、3,4-二硝基呋咱基氧化呋咱(DNTF)、黑索今(RDX)、二硝酰胺铵(ADN)等高能钝感氧化剂及1,2,4-丁三醇三硝酸酯(BTTN)、二缩三乙二醇二硝酸酯(TEGDN)、三羟甲基乙烷三硝酸酯(TMETN)、N-丁基-2-硝酸酯乙基硝胺(Bu-NENA)等钝感增塑剂的几种单元推进剂和钝感微烟推进剂的能量性能。计算结果表明,所列的7种含能氧化剂中,由RDX和DNTF形成的单元推进剂的标准理论比冲分别为2 696.4 N.s/kg和2 610.2 N.s/kg,明显优于其他几种氧化剂。当采用DNTF部分取代GAP推进剂中的RDX或ADN后,推进剂的理论比冲、密度和特征速度相应提高。由于DNTF的感度低于RDX,因此DNTF引入推进剂中,对提高钝感GAP微烟推进剂的能量性能是有益的。
According to the propellant formula theory calculation program, the effects of N-amidino urea dinitramide (FOX-12), 1,1-diamino-2,2-dinitro ethylene (FOX- (NTO), triamino trinitrobenzene (TATB), 3,4-dinitrofurazanyl furazan (DNTF), RDX, Ammonium nitrite (ADN) and other high energy insensitive oxidants and 1,2,4-butanetriol trinitrate (BTTN), triethylene glycol dinitrate (TEGDN), trimethylol ethane trinitric acid (TMETN), N-butyl-2-nitrate ethyl nitramine (Bu-NENA) and other insensitive plasticizers several insecticide propellants and insensitive fume propellant energy performance. The calculated results show that the theoretical theoretical impulse of the unit propellants formed by RDX and DNTF is 2 696.4 N · s / kg and 2 610.2 N · s / kg, respectively, out of the 7 kinds of energetic oxidants listed, which are obviously better than those of other oxidants. When DNTF was used to partially replace RDX or ADN in GAP propellants, the theoretical specific impulse, density and characteristic velocity of propellants increased accordingly. Because DNTF is less sensitive than RDX, the introduction of DNTF into propellants is beneficial for improving the energy performance of insensitive GAP microparticulate propellants.