论文部分内容阅读
自1931年提出Gerschgorin圆盘定理以来(文献[1])很多人围绕该定理做了大量的工作。有的由圆盘的位置来估计特征值的分布(如文献[2],[3]),也有的指出Gerschgorin圆盘中的个别点非特征值的条件,(如文献[4]).本文试给出一种应用Gerschgorin定理的改进方法,从而不同程度的缩小对特征值的估计范围。
Since the Gerschgorin disc theorem was proposed in 1931 ([1]), many people have done a great deal of work around this theorem. Some estimate the distribution of eigenvalues from the position of the disc (eg, [2], [3]), others indicate the non-eigenvalue of individual points in the Gerschgorin disc (eg [4]). An improved method applying Gerschgorin’s theorem is given to reduce the range of the eigenvalues to some extent.