论文部分内容阅读
设E和F是Banach空间,B(E,F)表示映E到F的有界线性算子全体.记T+0 ∈ B(F,E)为T0 ∈ B(E,F)的一个广义逆.本文证明,每一个具有‖T+0(T-T0)‖<1的算子T ∈ B(E,F),B≡(I+T+0(T-T0))-1T+0是T的广义逆当且仅当(I-T+0T0)N(T)=N(T0),其中N(·)表示括弧中算子的零空间.这一结果改进了Nashed和Cheng的一个有用的定理,并进一步证明Nashed和Cheng的一个引理对半-Fredholm算子有效但一般未必成立.