论文部分内容阅读
Tensile and isothermal fatigue tests were carried out on an as-rolled Mg-12Gd-3Y-0.5Zr alloy and its heat-treated counterpart at different temperatures. The experimental results show that the ultimate tensile strengths of two alloys decrease very slowly with increasing temperature up to 200?C. The ultimate tensile strength of heat-treated Mg-12Gd-3Y-0.5Zr is slight lower than that of as-rolled counterpart; however, the fatigue strength of heat-treated alloy is higher. The mechanism of fatigue failure was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It shows that cyclic slip combined with environmental effect may be the main crack initiation mechanism.
Tensile and isothermal fatigue tests were carried out on as as-rolled Mg-12Gd-3Y-0.5Zr alloy and its heat-treated counterpart at different temperatures. The experimental results show that the ultimate tensile strengths of two alloys decrease very slowly with increasing temperature up to 200 ° C. The ultimate tensile strength of heat-treated Mg-12Gd-3Y-0.5Zr is slight lower than that of as-rolled counterpart; however, the fatigue strength of heat-treated alloy is higher. failure was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It shows that cyclic slip combined with environmental effect may be the main crack initiation mechanism.