论文部分内容阅读
In this paper, the air-water vapor-water system is taken as an example, and the formula of constantpressure specific heat during non-equilibrium phase change process in the two-phase flow system is deduced using the theory of two-phase flow and thermophysics. The constant-pressure specific heat of non-equilibrium phase change process is calculated with the corresponding numerical model, and the numerical results are compared to those of the equilibrium phase change process. It is shown that in evaporation process, the variational rate of the non-equilibrium specific heat increases with increasing initial fluid temperature and particle mass fraction. The smaller particle radius is, the faster the variational rate is. Meanwhile, the constant-pressure specific heat of equilibrium process is higher than that of the non-equilibrium process all the time.