论文部分内容阅读
提出了属性相似度概念解决高维对象分类的权重问题,并结合云理论建立了基于属性相似度的云分类器.采用云理论建立训练集的各属性模型,表达各属性值隶属于其类别中心Ex的程度.分类模型由属性模型集成得到,属性权重根据属性相似度计算.各类别的同一属性间的相似度越大,此属性对分类的作用越小.基于粒子群优化方法对分类模型的中心位置Ex进行优化.将此分类器与普通云分类器应用于iris数据集的分类实验,该分类器的分类效果好于后者.