论文部分内容阅读
笔者听了几节使用旧教材的研讨课,觉得新理念并不凸显,不禁深思:面对新理念,手执旧教材,如何让旧教材也亮起新风采呢?下面,以几个教学片断谈谈自己的见解。
案例一:“角的初步认识”教学片断
课始,教师用课件出示三角形、长方形、正方形、半圆、圆等图形。
师:哪些图形有尖尖的角?
生:三角形、长方形、正方形都有尖尖的角。
(教师拿起三角板,用手比划一下,说这就是“角”)
师:请你拿出三角板,指一指角在哪里?(学生各自拿起三角板,有的手指向顶点,有的手指向边)
教师把三角板按在黑板上,沿着三角板的边画出一个角。
师:像这样的图形就是角。
思考:学生对教师创设的情境感兴趣吗?
教师教学时,先让学生通过看图形引出“角”,然后用三角板直接地告诉他们这就是角。教师未能从学生熟悉的生活情境和感兴趣的事物出发,提供观察与实践的机会,让学生经历从具体情境中抽象出“角”的过程,从而激发学生自主探索的欲望。课后,我问该教师:“你觉得学生对你创设的情境感兴趣吗?”教师说是按照书本的编排来设计教学的。
感悟:我们是“用教材”,而不是“教教材”。
教材出示一些图形让学生观察角,忽视了学生的认知规律,学生对这样的情境不感兴趣,造成对角的指认方法含糊不清。试想,如果教师创设贴近学生生活的情境,让学生小组合作从图中找“角”,经历从具体情境中抽象出“角”的过程,使数学教学更贴近于生活与学生,以增强学生对数学的理解和学好数学的信心,学生能不兴奋、不感兴趣吗?虽然我们使用的是旧教材,但教学也不应是不折不扣地执行,教师是用教材教,而不是教教材。用教材不是死啃教材,不是唯教材至上,而应把教材看作一个可参照的蓝本,并在此基础上进行开发与创新,而不是简单地执行和传递。
案例二:“认识圆的半径和直径”教学片断
课件出示圆和圆上的5个点。
师:在圆上还可以画点吗?
生:可以。
师:连接圆心和圆上的点,量一量,有什么发现?
生1:圆心到圆上每一个点的距离都相等。
师:我们把圆心到圆上任意一点的距离叫半径,用r表示,半径有无数条。(课件显示圆的半径)
课件出示3条直径。
师:这些线段有什么特点?
生2:都穿过了圆心,两端点在圆上。
师:像这样通过圆心两端在圆上的线段叫直径,用R表示,直径也有无数条。(课件显示圆的直径)
师:这3条直径有什么关系?
生:都相等。
师:请你们在纸上画一画、量一量,验证一下。
(有部分学生很不乐意地画和量,其中听到一学生低声说:“肯定相等,哪里还用量?”)
师:请你画出圆的半径、直径,并观察半径和直径之间有什么关系?
生3:直径是半径的两倍,半径是直径的一半。
师:两个不同的圆的直径相等吗?半径相等吗?
生:不相等。
师:说明半径和直径之间的关系是在什么前提条件下成立?
生:在同圆或等圆里。
思考:教师给了学生自己发现问题的机会吗?
本节课在教师的精心设计下,学生动手操作,从认识半径、直径到发现直径和半径的特点与关系。虽然学生也有发现和思考的成分,但课堂教学存在着重结果、轻过程的现象,忽视了学生自主探究、主动参与的过程。教师总是不停地提问,把教学内容分得过细,主导的痕迹十分明显。在这样的设计中,学生的回答基本在教师的意料之中,学生不敢越雷池半步。
感悟:真正让学生成为学习的主人。
“我听了,但我忘了;我看了,我记住了;我做了,我理解了。”《数学课程标准》也指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式,使学生成为学习的主人。”
作为六年级的学生,完全有能力通过自己或小组合作实践去体验与感悟数学知识,教师可以采用“大步骤”的提问方法,多留点空间和时间给学生思考,让学生探索其中的奥秘,体验探索的乐趣。正如案例中的教学,教师可以先演示,用细绳系着一小球,并甩动小球形成大小不同的圆,引发学生观察思考:小球为什么不跑到别的地方,却形成了一个圆?圆的大小跟什么有关系?让学生在小组内交流自己的看法,从而认识圆心和半径。然后让学生画出圆的半径,学生就要考虑没有圆心怎么画半径的问题,通过小组讨论得出找圆心的方法(把纸对折再对折,或对折后量折痕的一半,或用圆规试画等)。再让学生在圆上能画几条半径就画几条,从中发现半径有无数条,并且相等。这样的设计激发了学生的学习兴趣,关注了知识的形成过程,大大提高了学生的参与意识。
案例三:“能被3整除的数的特征”教学片断
师:以前都是老师出题你们做,今天我们换过来,你们出题老师做。你们随便说一个数,我能快速判断出它能不能被3整除。
(学生可兴奋了,纷纷报数考老师)
生1:200。
师:不能被3整除。
生2:156。
师:能被3整除。
生3:8913。
师:能!
教师想通过创设这样的悬念,激发学生的求知欲和好奇心,从而引出能被3整除的数的特征。这时,有学生说:“老师,我知道怎么算!”这出乎意料的回答让教师愣了一下,碍于在上公开课,教师只好说:“好,我来考你!123能被3整除吗?”“能。”“3465呢?”“能!”学生还是很自信。于是教师出了一个较大的数“895986982”,学生一下子算不出来,急得脸都红了,教师终于顺理成章地引入了课题。但一节课下来,那个学生都没有再举一次手了。课后,我问他:“你上课时想告诉老师什么?”学生说:“我发现,只要把那些数加起来看能不能被3整除就可以了。老师出的那个数太大了,我一下子算不出来。”
思考:教师关注了学生的情感、态度吗?
课堂上,教师由于被一个聪明学生的回答破坏了教学设计,为了顺利地达到教学目的,出了一个较大的数来考该学生。“我知道怎么算”,说明学生敢于挑战教师,而教师连一句表扬的话都没说,还用题难住学生。试问:教师关注了学生的情感、态度了吗?
感悟:尊重个性差异,关注学生发展。
由于这些客观存在的个体差异,课堂上随时可能发生一些事先没有预料的事情。教师是置之不理,还是作适当的点拨,对学生的成长影响深远。像上面案例中的学生,本来兴致勃勃地想告诉教师自己的发现,却让教师泼了一盆冷水,正因为教师不重视他的发现,造成他一节课都不再举手发言。新课程给我们指出了明确的方向:要尊重学生的个体差异,把它作为一种资源来利用,关注学生发展。
案例一:“角的初步认识”教学片断
课始,教师用课件出示三角形、长方形、正方形、半圆、圆等图形。
师:哪些图形有尖尖的角?
生:三角形、长方形、正方形都有尖尖的角。
(教师拿起三角板,用手比划一下,说这就是“角”)
师:请你拿出三角板,指一指角在哪里?(学生各自拿起三角板,有的手指向顶点,有的手指向边)
教师把三角板按在黑板上,沿着三角板的边画出一个角。
师:像这样的图形就是角。
思考:学生对教师创设的情境感兴趣吗?
教师教学时,先让学生通过看图形引出“角”,然后用三角板直接地告诉他们这就是角。教师未能从学生熟悉的生活情境和感兴趣的事物出发,提供观察与实践的机会,让学生经历从具体情境中抽象出“角”的过程,从而激发学生自主探索的欲望。课后,我问该教师:“你觉得学生对你创设的情境感兴趣吗?”教师说是按照书本的编排来设计教学的。
感悟:我们是“用教材”,而不是“教教材”。
教材出示一些图形让学生观察角,忽视了学生的认知规律,学生对这样的情境不感兴趣,造成对角的指认方法含糊不清。试想,如果教师创设贴近学生生活的情境,让学生小组合作从图中找“角”,经历从具体情境中抽象出“角”的过程,使数学教学更贴近于生活与学生,以增强学生对数学的理解和学好数学的信心,学生能不兴奋、不感兴趣吗?虽然我们使用的是旧教材,但教学也不应是不折不扣地执行,教师是用教材教,而不是教教材。用教材不是死啃教材,不是唯教材至上,而应把教材看作一个可参照的蓝本,并在此基础上进行开发与创新,而不是简单地执行和传递。
案例二:“认识圆的半径和直径”教学片断
课件出示圆和圆上的5个点。
师:在圆上还可以画点吗?
生:可以。
师:连接圆心和圆上的点,量一量,有什么发现?
生1:圆心到圆上每一个点的距离都相等。
师:我们把圆心到圆上任意一点的距离叫半径,用r表示,半径有无数条。(课件显示圆的半径)
课件出示3条直径。
师:这些线段有什么特点?
生2:都穿过了圆心,两端点在圆上。
师:像这样通过圆心两端在圆上的线段叫直径,用R表示,直径也有无数条。(课件显示圆的直径)
师:这3条直径有什么关系?
生:都相等。
师:请你们在纸上画一画、量一量,验证一下。
(有部分学生很不乐意地画和量,其中听到一学生低声说:“肯定相等,哪里还用量?”)
师:请你画出圆的半径、直径,并观察半径和直径之间有什么关系?
生3:直径是半径的两倍,半径是直径的一半。
师:两个不同的圆的直径相等吗?半径相等吗?
生:不相等。
师:说明半径和直径之间的关系是在什么前提条件下成立?
生:在同圆或等圆里。
思考:教师给了学生自己发现问题的机会吗?
本节课在教师的精心设计下,学生动手操作,从认识半径、直径到发现直径和半径的特点与关系。虽然学生也有发现和思考的成分,但课堂教学存在着重结果、轻过程的现象,忽视了学生自主探究、主动参与的过程。教师总是不停地提问,把教学内容分得过细,主导的痕迹十分明显。在这样的设计中,学生的回答基本在教师的意料之中,学生不敢越雷池半步。
感悟:真正让学生成为学习的主人。
“我听了,但我忘了;我看了,我记住了;我做了,我理解了。”《数学课程标准》也指出:“动手实践、自主探索、合作交流是学生学习数学的重要方式,使学生成为学习的主人。”
作为六年级的学生,完全有能力通过自己或小组合作实践去体验与感悟数学知识,教师可以采用“大步骤”的提问方法,多留点空间和时间给学生思考,让学生探索其中的奥秘,体验探索的乐趣。正如案例中的教学,教师可以先演示,用细绳系着一小球,并甩动小球形成大小不同的圆,引发学生观察思考:小球为什么不跑到别的地方,却形成了一个圆?圆的大小跟什么有关系?让学生在小组内交流自己的看法,从而认识圆心和半径。然后让学生画出圆的半径,学生就要考虑没有圆心怎么画半径的问题,通过小组讨论得出找圆心的方法(把纸对折再对折,或对折后量折痕的一半,或用圆规试画等)。再让学生在圆上能画几条半径就画几条,从中发现半径有无数条,并且相等。这样的设计激发了学生的学习兴趣,关注了知识的形成过程,大大提高了学生的参与意识。
案例三:“能被3整除的数的特征”教学片断
师:以前都是老师出题你们做,今天我们换过来,你们出题老师做。你们随便说一个数,我能快速判断出它能不能被3整除。
(学生可兴奋了,纷纷报数考老师)
生1:200。
师:不能被3整除。
生2:156。
师:能被3整除。
生3:8913。
师:能!
教师想通过创设这样的悬念,激发学生的求知欲和好奇心,从而引出能被3整除的数的特征。这时,有学生说:“老师,我知道怎么算!”这出乎意料的回答让教师愣了一下,碍于在上公开课,教师只好说:“好,我来考你!123能被3整除吗?”“能。”“3465呢?”“能!”学生还是很自信。于是教师出了一个较大的数“895986982”,学生一下子算不出来,急得脸都红了,教师终于顺理成章地引入了课题。但一节课下来,那个学生都没有再举一次手了。课后,我问他:“你上课时想告诉老师什么?”学生说:“我发现,只要把那些数加起来看能不能被3整除就可以了。老师出的那个数太大了,我一下子算不出来。”
思考:教师关注了学生的情感、态度吗?
课堂上,教师由于被一个聪明学生的回答破坏了教学设计,为了顺利地达到教学目的,出了一个较大的数来考该学生。“我知道怎么算”,说明学生敢于挑战教师,而教师连一句表扬的话都没说,还用题难住学生。试问:教师关注了学生的情感、态度了吗?
感悟:尊重个性差异,关注学生发展。
由于这些客观存在的个体差异,课堂上随时可能发生一些事先没有预料的事情。教师是置之不理,还是作适当的点拨,对学生的成长影响深远。像上面案例中的学生,本来兴致勃勃地想告诉教师自己的发现,却让教师泼了一盆冷水,正因为教师不重视他的发现,造成他一节课都不再举手发言。新课程给我们指出了明确的方向:要尊重学生的个体差异,把它作为一种资源来利用,关注学生发展。