论文部分内容阅读
如何从已分类的海量光谱中发现被错分的光谱一直是天文数据处理专家重点研究的问题,探讨的Isomap算法在该问题方面有很好的表现。通过Isomap算法与主成分分析方法(PCA)算法的实验结果对比发现:(1)PCA将具有不同特征的光谱投影到邻近的区域,而Isomap算法却可以将具有相似特征的光谱投影到邻近区域,而将具有不同特征的光谱投影到相距较远的区域;(2)Isomap算法给出的大部分离群点较易判断,且是具有很高科学价值的双星;而PCA给出的离群点难以判断,科学价值不高。因此,在光谱离群点发掘上Isomap算