论文部分内容阅读
支持向量机是一种基于统计学习理论的机器学习方法,针对小样本情况表现出了优良的性能,目前被广泛应用于模式识别、函数回归、故障诊断等方面。这里主要研究支持向量机分类问题,着重讨论了以下几个方面的内容。首先介绍了支持向量机分类器算法,并将其应用于数据分类,取得了较高的准确率,所用数据来自于UCI数据集。仿真结果表明该算法具有较快的收敛速度和较高的计算精度。