论文部分内容阅读
提出了基于多示例学习法的人体行为识别方法。利用人体骨架模型,将人体主要关节的属性特征作为人体运动的几何特征,提出了一种基于行为几何特征的自适应行为分解算法,将行为分解为简单动作。把分解后的行为看作一个包,各个动作看作包中的各个示例,结合多示例学习法与Any Boost算法提出了多示例行为学习算法(MILBoost算法),通过在多示例框架下对每一类行为进行学习,得到强分类器用于未知行为包的识别。实验结果表明该方法与其他方法相比具有更高的识别精度,并且在有噪声或干扰的情况下具有很好的识别精度。