论文部分内容阅读
构造矩形网格下求解Lagrangian坐标系下气动方程组的单元中心型格式.空间离散采用控制体积间断Petrov-Galerkin方法,时间离散采用二阶TVD Runge-Kutta方法.利用限制器来抑制非物理震荡并保证RKCV算法的稳定性.构造的算法可以保证物理量的局部守恒.与Runge-Kutta间断Galerkin(RKDG)方法相比较,RKCV方法的计算公式少一项积分项使得计算较简单.给出一些数值算例验证了算法的可靠性及效率.