论文部分内容阅读
本文从动量,能量及质量连续微分方程式出发,结合有关涡流扩散系数关联式及传热涡流混合长与动量涡流混合长之比的关联式,用积分的方法解出努歇特准数(Nusselt Number)的分析解表达式.本公式与彼德柯夫(Petukhov)用数值解方法得出的努歇特准数关联式比较,最大偏差小于7%.本公式的贡献在于能用一个公式计算各种鲁兰特准数和10~4以上各种雷诺准数条件下的圆管中湍流传热的努歇特准数.
Based on the continuum differential equations of momentum, energy and mass, this paper combines the correlation of vortex diffusion coefficient correlation and heat vortex mixing length to momentum vortex mixing length ratio, and uses the integral method to solve the Nusselt Number ) The analytic solution of this formula is compared with the Nucourt’s quasi-correlation formula from Petukhov’s numerical solution, with a maximum deviation of less than 7%. The contribution of this formula is that it can be calculated by a formula The Nutter’s quasi-number for the turbulent heat transfer in a circular tube under various Reynolds number criteria and 10 ~ 4 Reynolds number criteria.