论文部分内容阅读
提出一种将联合极大似然方法(JML)和遗传算法相结合解决SLAM数据关联问题的方法,简称GAJML.该方法采用"关联门"缩小数据关联的解空间范围,提高搜索效率;利用数据关联解的联合极大似然值作为适应度值,种群的初始化采用了自适应策略以提高算法计算速度.与单匹配最近邻(ICNN)和JML方法的对比实验表明该方法相比于ICNN方法耗时增加很少实时性好,数据关联正确率接近JML准确度高,并能够有效克服闭环问题引起的定位累积误差增长.