Extremely efficient electro-Fenton-like Sb(Ⅲ) detoxification using nanoscale Ti-Ce binary oxide:An e

来源 :中国化学快报(英文版) | 被引量 : 0次 | 上传用户:sunmoon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Environmental risks posed by discharge of the emerging contaminant antimony (Sb) into water bodies have raised global concerns recently.The toxicity of Sb has been shown to be species-dependent,with Sb(Ⅲ) demonstrating much greater toxicity than Sb(Ⅴ).Here,we proposed an electrochemical filtration system to achieve rapid detoxification of Sb(Ⅲ) via a non-radical pathway.The key to this technology was an electroactive carbon nanotube filter functionalized with nanoscale Ti-Ce binary oxide.Under an electric field,in situ generated H2O2 could react with the Ti-Ce binary oxide to produce hydroperoxide complexes,which enabled an efficient transformation of Sb(Ⅲ) to the less toxic Sb(Ⅴ) (τ < 2 s) at neutral pH.The impact of important operational parameters was assessed and optimized,and system efficacy could be maintained over a wide pH range and long-term operation.An optimum detoxification efficiency of> 90% was achieved using lake water spiked with Sb(Ⅲ) at 500 μg/L.The results showed that Ti/Ce-hydroperoxo surface complexes were the dominant species responsible for the non-radical oxidation of Sb(Ⅲ) based on extensive experimental evidences and advanced characterizations.This study provides a robust and effective strategy for the detoxification of water containing Sb(Ⅲ) and other similar heavy metal ions by integrating state-of-the-art advanced oxidation processes,electrochemistry and nano-filtration technology.
其他文献
In the crystal engineering area,it is important to clearly demonstrating the relationship of structure and certain functionality.Herein,we present the study of the relationship of structure with phosphorescent nature for two new room temperature phosphore
DNA methyltransferase (DNMT) and histone deacetylase (HDAC) are well recognized epigenetic targets for discovery of antitumor agents.In this study,we designed and synthesized a series of nucleoside base hydroxamic acid derivatives as DNMT and HDAC dual in
CO2 capture is considered as one of the most ideal strategies for solving the environmental issues and against global warming.Recently,experimental evidence has suggested that aluminum double bond(dialumene) species can capture CO2 and further convert it
Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO2 photoreduction.Herein,a novel kind of nanosheet-based intercalation hybrid coupled with CdSe quantum dots (QDs) was s
Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(acrylonitrile-co-β-methylhydrogen itaconate) copoly
Prussian whites (PWs) with a three-dimensional framework can accommodate the insertion and extraction of ions with large radius,which have been widely used in potassium ion batteries.However,PWs show the poor cycling performance and inferior rate ability
MnOx-CeO2 catalysts are developed by hydrolysis driving redox method using acetate precursor(3Mn1Ce-Ac) and nitrate precursor (3Mn1Ce-N) for the selective catalytic reduction (SCR) of NOx by NH3.A counterpart sample (Cop-3Mn1Ce) was prepared by the NH3·H2
Microbial fuel cells (MFCs) have various potential applications.However,anode is a main bottleneck that limits electricity production performance of MFCs.Herein,we developed a novel anode based on a stainless steel cloth (SC) modified with carbon nanopart
Electrochemical water splitting is a facile and effective route to generate pure hydrogen and oxygen.However,the sluggish kinetics of hydrogen evolution reaction (HER) and especially oxygen evolution reaction (OER) hinder the water splitting efficiency.Me
In power storage technology,ion exchange is widely used to modify the electronic structures of electrode materials to stimulate their electrochemical properties.Here,we proposed a multistep ion exchange(cation exchange and anion exchange) strategy to synt