论文部分内容阅读
提出一种基于最小二乘支持向量机和小波包分解的电能质量扰动分类方法。对正常电压和几种常见电能质量扰动(电压骤升、电压骤降、电压中断、暂态脉冲、暂态振荡、谐波和电压闪变)进行小波包分解,提取各终节点小波包系数的标准偏差作为特征向量;然后,用自适应优化算法对最小二乘支持向量机进行优化;最后,利用基于优化参数和最小输出编码的最小二乘支持向量机进行分类和识别。与BP神经网络分类方法相比,该方法能克服训练时间较长、容易陷入局部最小等问题,具有较快的训练速度和较高的分类准确率,在样本数较小时仍取得较好的效果。仿真实验验