论文部分内容阅读
总体经验模态分解(EEMD)方法在EMD的基础上消除了模态混叠的现象,从而更能准确地揭露出信号特征信息。根据声发射信号的非稳态、非线性的特点,提出一种基于EEMD应用于刀具磨损状态识别的方法。通过EEMD获取无模态混叠的IMF分量;通过敏感度评估算法从所有IMF分量中提取敏感的IMF;提取敏感IMF的能量作为支持向量机(SVM)分类器的输入,将刀具分成正常切削、中期磨损和严重磨损3种状态。通过比较EEMD与应用EMD等方法的分类准确率,确立了基于EEMD的方法在提取刀具磨损状态特征信息的优势。