基于核拉普拉斯稀疏编码的图像分类

来源 :大连理工大学学报 | 被引量 : 5次 | 上传用户:hulin99
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,增强稀疏编码的性能.在3个标准数据集上的实验结果表明,所提出的基于KLSc的图像分类算法具有良好的分类效果,分类正确率优于LSc.
其他文献