论文部分内容阅读
Electrochemical fixation of nitrogen to ammonia with highly active,highly selective and low cost electrocatalysts is a sustainable alternative to the extremely energy-and capital-intensive Haber-Bosch process.Herein,we demonstrate a near electroneutral WO3 nanobelt catalyst to be a promising electrocatalyst for selective and efficient nitrogen reduction.The concept of near electroneutral interface is demonstrated by fabricating WO3 nanobelts with small zeta potential value on carbon fiber paper,which ensures a loose double layer structure of the electrode/ electrolyte interface and allows nitrogen molecules access the active sites more easily and regulates proton transfer to increase the catalytic selectivity.The WO3/CFP electrode with optimal surface charge achieves a NH3 yield rate of 4.3 μg·h-1·mg-1 and a faradaic efficiency of 37.3% at-0.3 V vs.RHE,rivalling the performance of the state-of-the-art nitrogen reduction reaction electrocatalysts.The result reveals that an unobstructed gas-diffusion pathway for continually supplying enough nitrogen to the active catalytic sites is of great importance to the overall catalytic performance.