论文部分内容阅读
聚类分析是数据挖掘及机器学习领域内的重点问题之一。近年来,为了提高聚类质量,借鉴和引入了分类领域特征选择及特征赋权思想,提出了一些基于特征赋权的聚类算法。在这些研究基础上,本文提出了一种基于密度的初始中心点选择算法,并借鉴文[1]所提出的特征赋权方法,给出了一种改进的基于特征赋权的K均值算法。实验表明该算法能较为稳定地得到较高质量的聚类结果。