论文部分内容阅读
R.Méray、波莱尔(E.Borel)及C.Runge等人已指出利用拉格朗日(Lagrange)插值公式所得多项式在一些情况下不能很好逼近被插函数.如何改进拉格朗日插值公式使之更好地逼近被插函数是当时数学家思考的一个重要问题,波莱尔即为其中之一.基于原始文献,利用历史分析和比较的方法,搞清了波莱尔改进拉格朗日插值公式的思想背景,分析了他的改进方法,探讨了其思想在当时的重要影响.