论文部分内容阅读
为提高矿井煤与瓦斯突出的预测性能,提出了粗糙集(RS)与克隆选择算法(CSA)―支持向量机(SVM)集成的预测方法。首先应用粗糙集理论对数据集进行约简提取出关键特征指标和数据样本,然后应用支持向量机构建煤与瓦斯突出预测模型,最后应用克隆选择算法和训练样本集预测错误率最小原则智能选择和优化预测模型的参数向量;煤与瓦斯突出预测实验结果验证了该方法的有效性,性能明显优于传统的神经网络预测方法。