论文部分内容阅读
<正> 本文应用Nevanlinna理论,研究了一类相当一般的复常微分方程的代数体函数解的存在性问题并得到若干新的结果。一、引言微分方程代数体函数解的存在性问题,首先由Malmquist所研究,吉田耕作首先应用Nevanlinna理论的方法重新证明和推广了Malmquist定理,其后,F. Gackstatter和I. Laine;何育赞与肖修治考虑了下述微分方程的相应问题: