论文部分内容阅读
异常点挖掘的意义主要体现在两个方面。传统观念中,异常点常常被认为是噪声数据或无用数据,分析时的一般方法是排除这些干扰数据,更好地估计模型的参数。然而,随着Lon—MuLiu.et(2001)在快餐行业的数据中进行了实例分析,异常点挖掘也被用于挖掘异常点本身所蕴含的信息。ARIMAX模型引入了外部变量,可以更好地拟合数据。因而对含异常点的ARIMAX模型,提出了利用Gibbs抽样挖掘其中AO型异常点的方法,最后进行了模拟试验,取得了较好的结果。