集成KPCA与t‑SNE的滚动轴承故障特征提取方法

来源 :振动工程学报 | 被引量 : 0次 | 上传用户:chenbenxia
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对滚动轴承原始数据集包含高维非敏感特征的问题,提出一种集成核主成分分析(Kernel Principal Component Analysis,KPCA)与t‑分布随机邻域嵌入(t‑distributed Stochastic Neighbor Embedding,t‑SNE)的滚动轴承故障低维敏感特征提取方法。该方法先计算滚动轴承原始振动信号的时域、频域以及时频域特征,构建初始高维特征数据集。利用KPCA降低高维数据集的相关性,在最大化高维数据全局特征方差的目标下,提取出非线性特征子集。通过t‑SNE
其他文献
在房屋建筑工程中,造价是一项非常重要的内容,对于房屋建筑企业而言,房屋建筑工程的造价管理可以有效 控制企业的建设成本,确保房屋建筑企业的经济效益最大化。但从当前实际
摘要: 针对旋转机械故障特征集非线性强、维数过高导致分类困难的问题,提出一种基于局部质心均值最小距离鉴别投影(Local Centroid Mean Minimum?distance Discriminant Projection,LCMMDP)的故障数据集降维算法。该算法在考虑样本的内聚性和分离性的同时,能够保持样本局部几何结构信息,反映样本与局部质心均值之间的近邻关系。从多个角度提取机械振动信
摘要: 为有效获得轴承退化过程,设计一种改进损失函数的卷积自编码器(Convolutional Autoencode),使其可从多传感器采集的振动信号中提取轴承健康状态,避免了局部信息的丢失,同时得到了更深层次的故障特征。提出了一种基于双向长短时记忆网络(Bi?directional LSTM)的循环神经网络结构,利用其对时间序列数据的处理能力,学习轴承在实际工作过程中的退化规律,实现对轴承的剩余